Lymphatic Translocation of Carbon Nanotubes in Rats

نویسندگان

  • Shigetoshi AISO
  • Hisayo KUBOTA
  • Yumi UMEDA
  • Tatsuya KASAI
  • Mitsutoshi TAKAYA
  • Kazunori YAMAZAKI
  • Kasuke NAGANO
  • Shoji FUKUSHIMA
چکیده

In order to assess the extrapulmonary effects of multiwall carbon nanotubes (MWCNT), deposition of MWCNT and histopathologic changes in lung-associated lymph nodes (LALN) were examined in MWCNT-administered rats. At the age of 13 wk, male F344 rats were intratracheally instilled with MWCNT at a dose of 0 (vehicle), 40 or 160 μg/rat. The rats were sacrificed on Day 1, 7, 28 or 91 after instillation and light microscopic examinations were performed on LALN tissues. MWCNT was translocated to right and left posterior mediastinal lymph nodes and parathymic lymph nodes. Deposition of MWCNT was greater in the posterior mediastinal lymph node than in the parathymic lymph node, and the amount of MWCNT deposited in these two lymph nodes increased gradually and dose-dependently with time. MWCNT was phagocytosed by nodal macrophages, and some of the MWCNT-laden macrophages were aggregated. Transmission electron microscopic (TEM) observation confirmed the presence of MWCNT fibers with a characteristic multi-walled cylindrical structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Cardiopulmonary Toxicity Following Oral Administration of Multi-walled Carbon Nanotubes in Wistar Rats

Objective(s): Carbon nanotubes have unique mechanical, electrical, and thermal properties, with potential different applications in nanomedicine, electronics, and other industries. These new applications of carbon nanotubes in different industries lead to the increased exposure risk of nanomaterials to human. Up to now, all aspects of carbon nanotubes toxicity are not com...

متن کامل

Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles.

Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles were readily taken up into lymph vessels and delivered gemcitabine to lymph nodes with high efficiency under the guidance of a magnetic field.

متن کامل

Insertion of Short Amino-Functionalized Single-Walled Carbon Nanotubes into Phospholipid Bilayer Occurs by Passive Diffusion

Carbon nanotubes have been proposed to be efficient nanovectors able to deliver genetic or therapeutic cargo into living cells. However, a direct evidence of the molecular mechanism of their translocation across cell membranes is still needed. Here, we report on an extensive computational study of short (5 nm length) pristine and functionalized single-walled carbon nanotubes uptake by phospholi...

متن کامل

Evaluation of cardiovascular toxicity of carbon nanotubes functionalized with sodium hyaluronate in oral regenerative medicine

It has been demonstrated that carbon nanotubes (CNTs) associated with sodium hyaluronate (HY-CNTs) accelerate bone repair in the tooth sockets of rats. Before clinical application of HY-CNTs, it is important to assess their biocompatibility. Moreover, cardiac toxicity may be caused by the translocation of these particles to the blood stream. The aim of this study was to evaluate possible change...

متن کامل

Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment.

Strategies using carbon-based nanomaterials as carriers for delivering chemotherapeutic drugs to cancers have been described well. Here a novel magnetic lymphatic-targeting drug-delivery system, based on functionalised carbon nanotubes (fCNTs), is presented with the aim of improving the outcome of cancer with lymph node involvement. The potential therapeutic effect of gemcitabine (GEM) loading ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010